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ABSTRACT

There are currently two well-accepted models that explain how pulsars exhibit glitches, sudden changes in
their regular rotational spin-down. According to the starquake model, the glitch healing parameter Q, which
is measurable in some cases from pulsar timing, should be equal to the ratio of the moment of inertia of the
superfluid core of a neutron star (NS) to its total moment of inertia. Measured values of the healing
parameter from pulsar glitches can therefore be used in combination with realistic NS structure models as
one test of the feasibility of the starquake model as a glitch mechanism. We have constructed NS models
using seven representative equations of state of superdense matter to test whether starquakes can account for
glitches observed in the Crab and Vela pulsars, for which the most extensive and accurate glitch data are
available. We also present a compilation of all measured values of Q for Crab and Vela glitches to date that
have been separately published in the literature. We have computed the fractional core moment of inertia for
stellar models covering a range of NS masses and find that for stable NSs in the realistic mass range 1.4 4+ 0.2
M., the fraction is greater than 0.55 in all cases. This range is not consistent with the observational restriction
0 <0.2 for Vela if starquakes are the cause of its glitches. This confirms results of previous studies of the Vela
pulsar that have suggested that starquakes are not a feasible mechanism for Vela glitches. The much larger
values of Q observed for Crab glitches (Q = 0.7) are consistent with starquake model predictions and support

previous conclusions that starquakes can be the cause of Crab glitches.
Subject headings: pulsars: individual (PSR B05314-21, PSR B0833—45) — stars: neutron

1. INTRODUCTION

Soon after the discovery of radio pulsars (Hewish et al.
1968), they were identified as rotating, highly magnetized
neutron stars (NSs; Gold 1968, 1969; Ostriker & Gunn
1969). It was observationally established that pulsar periods
slowly and monotonically increase with time as a result of
magnetic braking and rotational energy loss. Early in 1969,
it was noticed that the Vela pulsar suddenly increased its
angular velocity (Reichley & Downs 1969; Radhakrishnan
& Manchester 1969). This distinct and sudden increase in
rotational frequency, known as a glitch, was later regularly
observed in the Vela and Crab pulsars and, more infre-
quently, in other pulsars (e.g., Shemar & Lyne 1996; Lyne,
Shemar, & Smith 2000). The Crab (PSR B0531+421) and
Vela (PSR B0833—45) pulsars are the two best-studied
glitching pulsars, since they have each been observed to
glitch a number of times and are bright and easy to monitor.
These pulsars have the most extensive and accurate glitch
data published and currently provide the best test of the
physical mechanisms by which pulsar glitches occur.

There are currently two competing models that are well
accepted to explain how pulsars glitch. In simplest terms,
both models treat the NS as a two-component body, with a
superfluid interior core surrounded by a rigid external
crust (e.g., Ruderman 1972). These two components are
dynamically weakly coupled through the magnetic field.

In the starquake glitch model (Ruderman 1976; Baym &
Pines 1971; Alpar et al. 1996), a slight equatorial oblateness
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in the crust can be formed if the NS is born rapidly spinning.
As the pulsar slows down via magnetic braking, the
deformation cannot be supported through centrifugal pres-
sure from the core, and the crust can suddenly crack under
gravity. The subsequent reduction in oblateness reduces the
moment of inertia, resulting in a sudden increase in the
rotational frequency, seen as a glitch.

Alternatively, in the vortex unpinning model of glitches
(Anderson & Itoh 1975; Alpar et al. 1984, 1993), angular
momentum is stored in vortices of superfluid that migrate
outward from the core as the star slows down. These vorti-
ces can become pinned to nuclei in the transition region
between the core and outer crust, thereby preventing angu-
lar momentum transfer to the crust. A differential rotation
develops between the core and crust until a catastrophic
unpinning of the vortices occurs. Angular momentum is
suddenly transferred to the crust, spinning it up. Since the
crust is tightly coupled to the external magnetic field, this
sudden spin-up in the rotation period is observed as a glitch.

Within the starquake model, the time evolution of a
pulsar’s rotational frequency after the occurrence of a glitch
(Wang et al. 2000) can be fitted by the equation

Q1) = Q1) + AQo[1 — O(1 — /)] + AQ,t . (1)

Here, Q(7) represents an extrapolation of the preglitch
frequency evolution, A€2,—, is the magnitude of the change
in the rotational frequency at the time of the glitch (z = 0), 7
is a characteristic exponential healing or recovery time after
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the glitch, and Q is the fraction of the initial frequency
change that is eventually recovered (known as the healing
parameter). The last term accounts for any permanent (not
recovered) change A2, in the frequency derivative after the
glitch. The parameter Q in equation (1) can be determined
observationally (Shapiro & Teukolsky 1983) from the jump
in Q and its first and second time derivatives:

A2,

@= A8 A0,

2)
In the starquake model, Q is related to the moments of

inertia of the components of the star according to (Pines,
Shaham, & Ruderman 1974)

o Leore ’ (3)

I, total

where I and iy are respectively the moment of inertia
of the superfluid core and the moment of inertia of the entire
star. We have constructed a series of models of the NS
interior using representative high-density equations of state
(EOSs) in order to test whether the calculated moments of
inertia in the models satisfy the prediction of the starquake
model for Crab and Vela glitches. We have compared the
model results with the measured values of Q from Crab and
Vela glitches to see if they are consistent.

2. EQUATIONS OF STATE

We have constructed NS models using seven representa-
tive EOSs of superdense matter from which parameterized
model stars can be produced. For densities p<1.6 x 1014 g
cm~3 (crustal densities), we have used three EOSs for three
separate density regimes (see, e.g., Shapiro & Teukolsky
1983). These three EOSs are described by Feynman,
Metropolis, & Teller (1949), Baym, Pethick, & Sutherland
(1971), and Baym, Bethe, & Pethick (1971). The seven high-
density EOSs, which dominate the macroscopic characteris-
tics of the model stars, are briefly described below. Further
details about each EOS can be found in the sources
referenced.

2.1. The BJW Equation of State

For densities above the nuclear density, a combination of
EOSs presented by Canuto (1975) was used for the model-
ing. For densities up to ~5x 105 g cm—3, the EOS
described by Bethe & Johnson (1974) was employed. This
EOS is an improvement on the work of Reid (1968), which
includes a repulsive nucleonic core arising from the
exchange of vector mesons in a hyperonic liquid. At higher
densities, the EOS of Walecka (1974) was used, although
the NS models produced in this density regime were beyond
the stability limit. In this EOS, nucleons interact attractively
via exchange of scalar mesons and repulsively via exchange
of more massive vector mesons. Summaries of these EOSs
are also presented by Shapiro & Teukolsky (1983). We call
this EOS BJW.

2.2. The FPS Equation of State

Lorenz, Ravenhall, & Pethick (1993) refer to an EOS
calculated by Friedman & Pandharipande (1981) for high-
density neutron and nuclear matter. This EOS employs the
microscopic V14 two-body potential, a three-nucleon inter-

action (TNI) potential, and hypernetted chain techniques.
This EOS was modified by fitting the microscopic inter-
action of Friedman & Pandharipande to a Skyrme-like
energy density function (Skyrme 1959). The essential feature
of the Skyrme model is a two-body interaction that has
the spatial character of a two-body delta function plus
derivatives. We refer to this EOS as FPS.

2.3. The GWM Equation of State

This EOS is based on a variant of the theory of
nuclear field coupling (Zimanyi & Moszkowski 1990) in
which the scalar field is coupled to the derivative of the
nucleon field. A modification proposed by Glendenning,
Weber, & Moszkowski (1992), called the hybrid deriva-
tive coupling model, replaces the purely derivative cou-
pling of the scalar field to baryons and vector mesons
with a Yukawa point and derivative coupling to baryons
and both vector fields. The coupling model is consistent
with the experimentally inferred binding energy of
lambda hyperons in nuclear matter. The resulting EOS,
called GWM here, maintains equilibrium between all
baryons and leptons to convergence. The existence of
hyperons significantly softens this EOS.

2.4. The HKP Equation of State

This EOS, proposed by Haensel, Kutschera, &
Proszynski (1981), supposes that a minimal condition for
the properties of high-density matter is that it must pro-
duce the observed values for the saturation properties of
nuclear matter. The relativistic mean field theory of Serot
(1979) is assumed in which nucleon interactions are
governed by the exchange of neutral scalar and neutral
vector mesons, pions, and rho mesons. This theory is an
extension of the relativistic mean field theory of Walecka
(1974). The authors assume a conservative range of possi-
ble nuclear saturation densities, the mean of which is
2.8 x 10 g cm—3. The EOS used here, called HKP, is
based on this nuclear saturation value.

2.5. The WFF Equation of State

Wiringa, Fiks, & Fabrocini (1988) describe a microscopic
EOS of dense nuclear matter constrained by nucleon-
nucleon scattering data. The interaction includes a two-
nucleon Urbana v;4 potential and a TNI three-body
potential term (Lagaris & Pandharipande 1981a, 1981b).
The three-body potential includes a repulsive term, the
primary effect of which is a reduction in the intermediate-
range attraction of the two-nucleon potential, and an attrac-
tive term, which becomes negligible at high densities. We
refer to this EOS as WFF.

2.6. The APR Equations of State

Akmal, Pandharipande, & Ravenhall (1998) describe a
set of realistic EOSs based on the Argonne v3 two-nucleon
interaction (Wiringa, Stoks, & Schiavilla 1995), calculated
using variational chain summation methods. This is supple-
mented with a relativistic boost correction term (Forest,
Pandharipande, & Friar 1995) and a TNI term based on the
Urbana IX model (Pudliner et al. 1995). The two cases of
pure neutron matter (PNM) and symmetric nuclear matter
(SNM) are separately considered. The latter is composed of
equal numbers of neutrons and protons in beta equilibrium.
The two EOSs used to construct the models presented here
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were derived from a parabolic fit to and extrapolation of the
tabulated nucleon density and energy values given for PNM
and SNM by Akmal et al. (1998). We refer to the two EOSs
based on PNM and SNM as APR(p) and APR(s),
respectively.

3. THE MODELING PROCEDURE

To construct parameterized NS models for each EOS, we
first chose a central density p. = p(0) for each stellar model.
The EOS and the relativistic expressions for stellar structure
(Oppenheimer & Volkoff 1939) were used to calculate the
pressure gradient and incremental mass contained in con-
centric shells as the model iterated outward from the center
of the star. The relativistic structure equations are

W) _ arotr) @
dP(r) P(r)] Gm(r) + 473 P(r)/?]
ar {p(r) + c? ] r2[1 —=2Gm(r)/r?] (3)

where m(r) represents the mass of the star internal to a dis-
tance r from the center of the star. When the pressure
reaches zero, P(R) =0, the edge of the star is reached
(r = R), and the relevant macroscopic parameters can be
read off.

To calculate the relativistic moment of inertia I(r)
interior to a radius r, expressions given by Arnett & Bowers
(1977) were used that account for the Lense-Thirring frame-
dragging effect (e.g., Glendenning 2000; see discussion
below):

dl(r) 8 [p(r) + P(r)/c*rte ") w(r) ©)
dr 3 [1=2Gm(r)/r]? QO

Here, € is the observed stellar rotational frequency, and
w(r) is the angular velocity of the star at a distance r relative
to the angular velocity of the rotating local inertial frame,
which is dragged at angular velocity w(r):

5(r) = Q — w(r) . (7)

The term e~¢(") in equation (6) translates w(r) as measured
from infinity to w(r) as measured in the local inertial frame
at r. The following auxiliary relations were used to deter-
mine values of ¢(r) and w(r) throughout the star (r < R) in
the moment of inertia calculation:

do(r) 1 dP(r)
dr [ (r)c? +P(r)] dr =’ ®)
i) = |1 - 200 e ©)
- [r“j(r) detr )} a0 —0. (o)

An arbitrary value of w(0) was chosen, and the following
boundary conditions imposed in the models:

dw(0)
o—=0, (11)
&(R) = Q-?d“;(r ) | (12)
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This latter condition (in which a value for Q2 is determined
at the end of the model iteration) was used to scale the arbi-
trarily chosen @(0) in such a way as to yield the proper
observed (2 in a subsequent modeling pass. This subsequent
pass produced the correct w(r) for all < R. The condition
of finite ¢(0) was also imposed.

Milne’s centered algorithm (Harrison et al. 1965) was
used for the iteration. Since there is a transition region
between the superfluid core and the rigid crust that consists
of a mixture of nuclei and free baryons, there is no clear
division where the core-crust transition occurs. We chose a
transition density near the nuclear density (pgansition ~
2.4 x 10 g cm™?) in order to separate the two components
in our models. From this we obtained Icore = I(Firansition)
and I, = I(R) for each model NS and could compare the
ratio of these with the measured values of Q from glitch
observations. In previous work, some authors (e.g., Datta &
Alpar 1993; Shapiro & Teukolsky 1983) have assumed a
slightly lower core-crust transition density than the one used
here. This lower transition density reduces the size of the
crust, thereby increasing the fractional moment of inertia of
the core. Although slight differences in the choice of the
transition density do not affect our model results, a signifi-
cant reduction would lead to a more stringent test of the
starquake model (i.e., it would further limit the range of
observed Q that would be consistent with the predictions of
the starquake model). Thus, our choice of pyansition 1S @
conservative one for this purpose.

For angular rotation speeds comparable to those of the
Crab and Vela pulsars (2~ 190 and 70 rad s/,
respectively), the macroscopic star parameters are affected
by first-order rotation effects, but not significantly so by
second-order effects.

The Lense-Thirring frame-dragging effect is a first-
order effect that scales with rotational speed as Q /e
(Arnett & Bowers 1977), where Q. = (GM/R3)"*, the
critical value above which centrifugal mass shedding
would occur for the rotating star. For realistic NS mod-
els, . ~ 13,000 rad s~!. This first-order effect is there-
fore ~1%-2% for the Crab and Vela pulsars and is taken
into consideration in the calculation of the relativistic
moment of inertia in the models.

NS mass shifts and deformations in sphericity from rota-
tion (which would complicate the simple spherical stellar
modehng presented here) are second-order effects, scaling as
(©2/9.)* (Arnett & Bowers 1977). This term would be signif-
icant for millisecond pulsars, but for the Crab pulsar, the
second-order effect is ~10~4, and it is even lower for Vela.
Thus, the second-order effect can be safely ignored when
considering the macroscopic parameters of our NS models.

4. RESULTS

We have produced a set of parameterized NS models
using the seven high-density EOSs described above. In order
to decide which models in each series were appropriate to
use in the comparison with the observed values of Q, we
used a realistic NS mass range as a reasonable constraint.
Models with an NS mass outside of the range were not used
in the comparison.

Thorsett & Chakrabarty (1999) have presented a statisti-
cal study of NS masses for the known binary radio pulsar
population for which useful mass constraints can be
derived. They find that, statistically, the distribution of
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Fic. |.—Mass vs. central density for NS models constructed from seven
high-density EOSs. The seven parameter curves correspond to these seven
EOSs in order of increasing maximum mass: GWM, BJW, FPS, WFF,
APR(p), APR(s), and HKP. Branches with positive slope (a necessary con-
dition for stability) are indicated with solid lines. The dashed horizontal
lines correspond to the mass range 1.4 + 0.2 M, which is assumed to be a
realistic NS mass range.

pulsar masses falls in the range M = 1.35+ 0.04 M. This is
consistent with the initial NS mass function from simula-
tions of supernovae, which predict that NSs are formed with
M=1.2 M. (Timmes, Woosley, & Weaver 1996). For our
comparison and analysis, we consider only the mass range
M =14+0.2 M., which we assume to be a conservative
estimate of the realistic NS mass range.

Figure 1 shows NS mass M = m(R) as a function of cen-
tral density p. = p(0) for our models constructed using the
seven different EOSs described above. NS branches with
dM/dp. > 0 satisfy a necessary stability criterion (e.g.,
Arnett & Bowers 1977) and are indicated with solid lines.
For all EOSs used, there are stable model stars in the mass
range 1.4 £ 0.2 M,. Figure 2 shows NS mass M as function
of radius R for the seven EOSs used. Stable NS branches are
again indicated with solid lines. None of the models in the
stable branches violate the required stability condition
M/R < 4c2/9G for static relativistic stars (Glendenning
2000).

Figure 3 shows the ratio of the moment of inertia of the
core, I.ore, to the total moment of inertia, fio,, as a function
of NS mass M. For stable models in the mass range of inter-
est (1.4 + 0.2 M), this ratio is confined to Iore/Tiotal 2 0.55.
Starquakes cannot be responsible for producing glitches in
a pulsar with measured values of Q consistently outside this
range unless the pulsar mass is significantly smaller than
expected.

Glitch measurements (including measurements of Q) for
the Crab and Vela pulsars have been published in various
places in the literature (see Table 1 for references). However,
no comprehensive current listing of all measured values of
Q for Crab and Vela glitches exists. Table 1 is a compilation
of all measured values of Q published to date for glitches

COMPARISON OF GLITCH PARAMETERS WITH NS MODELS 1055

NS Mass (solar masses)
)

o
o))

10 15 20
NS Radius (km)

[av)
o

F1G. 2.—Mass vs. radius for NS models constructed from seven high-
density EOSs. Stable branches are indicated with solid lines. The dashed
horizontal lines correspond to the mass range 1.4 +0.2 M., which is
assumed to be a realistic NS mass range.

from the Crab and Vela pulsars. Some are different
measurements of the same glitch. This complete set of mea-
surements can be used to derive a range of observed Q for
each pulsar. From the 21 measurements of Q for Crab

50 S I L R B

Fractional Moment of Inertia

ool A/ v v v v b v b e b e b
0 1 2 3 4
NS Mass (solar masses)

FiG. 3.—Fractional core moment of inertia vs. mass for NS models con-
structed from seven high-density EOSs. The assumed realistic NS mass
range 1.4 £ 0.2 M, is indicated by the dashed vertical lines. Stable NS con-
figurations (solid lines) in the mass range 1.4 + 0.2 M, have corresponding
Loore /Tiota1 2 0.55 in all cases. This ratio is consistent with the large values of
the glitch healing parameter Q predicted by the starquake model for Crab
glitches (Q 2 0.7), supporting the starquake glitch interpretation. The ratio
is inconsistent with the much lower values of Q seen for Vela (0 <0.2),
indicating that starquakes do not account for Vela glitches.
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TABLE 1
MEASURED VALUES OF Q) FOR CRAB AND VELA GLITCHES

MID of Glitch (0] Reference

Crab (PSR B0531421)

0.923 +£0.073
0.93 £0.05
0.94 +0.01

0.58
0.92 +0.02
0.96 (fixed)
0.71 £0.02
0.96 £0.03

0.77

0.707 £ 0.002
0.7 (fixed)
0.7 (fixed)

1.00
0.89
0.87
0.80
0.68
0.87
0.92
0.83
0.80+04

AN R R R W W W RN W WER WD~

Vela (PSR B0833—45)

0.034£0.01 7
0.035+0.001 7
0.55+£0.21 7
0.088 £ 0.008 7
0.323+0.012 8
0.024 £ 0.005 7
0.220 +0.036 8
0.177 £0.001 9
0.044 +0.003 10
0.158 £0.001 10
11

11

12

11

... 11

0.38 £0.02 12
13

REFERENCES.—(1) Boynton et al. 1972; (2) Lohsen
1975; (3) Lohsen 1981; (4) Lyne, Pritchard, & Smith 1993;
(5) Wong, Backer, & Lyne 2001; (6) Wang et al. 2001;
(7) Downs 1981; (8) Manchester et al. 1983; (9)
McCulloch et al. 1983; (10) McCulloch et al. 1987; (11)
Lyne et al. 2000; (12) Wang et al. 2000; (13) Dodson,
McCulloch, & Lewis 2002.

glitches, a weighted mean of the values yields
0 =0.72+0.05." This is only slightly smaller than the
unweighted mean of Q = 0.83. A range of 9020.7 encom-
passes the observed distribution for the Crab pulsar. A
weighted mean of the 11 measurements of Q for Vela
glitches yields 0.12 £+ 0.07, while an unweighted mean gives
0O = 0.18. All estimates for Vela agree that Q is small, with a
likely range of 0 <0.2.

I For measurements of Q without a quoted uncertainty, an uncertainty
of 0.1 was simply assumed in the calculation of the weighted mean.
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5. DISCUSSION

The glitch behavior of the Crab (Alpar et al. 1994, 1996)
and Vela (Alpar et al. 1993; Chau et al. 1993) pulsars has
been extensively studied previously. Below we discuss and
compare our model results with the observed range of Q in
the context of this previous work.

5.1. Vela

Alpar et al. (1993) and Chau et al. (1993) have found that
their model predictions of vortex unpinning in Vela are
completely consistent with the observed Vela glitch charac-
teristics. They deduce that the fractional crustal moment of
inertia must be greater than 2.6% for Vela (Chau et al.
1993). Datta & Alpar (1993) have used a corresponding
lower limit of 3.4% for Vela in an attempt to rule out soft
EOSs. Link, Epstein, & Lattimer (1999) employ a lower
limit of 1.4% for a similar purpose. These estimates imply
an upper limit to the fractional core moment of inertia of
~0.98, which tends to disfavor APR(s) models with mass
M 21.5 M, but cannot independently constrain the Vela
mass, since this condition is satisfied for a wide range of
model masses (see Fig. 3). The conclusions made by Alpar
et al. (1993) and Chau et al. (1993) that the Vela mass is
probably less than 1.4 M, (and is more likely closer to 1.2
M, ) cannot be confirmed or ruled out. Lyne (1992) explains
one reason why starquakes cannot be the glitch mechanism
for Vela: the required oblateness is not sustainable given the
large size of Vela glitches (AQ2/Q ~ 10-9). After ~100 yr,
the oblateness would reach zero, and therefore glitches
could only have been sustained for ~1% of the current Vela
age. The time interval between Vela glitches is also inconsis-
tent with the much longer intervals predicted by the star-
quake model (Alpar et al. 1996) unless a solid core model is
invoked for Vela (e.g., Canuto & Chitre 1973; Pines et al.
1974). Starquakes would also produce a thermal energy dis-
sipation during the large Vela glitches that is expected to be
observable as a change in X-ray luminosity soon after the
glitch occurs. X-ray observations of Vela show no such sig-
nal down to limits of less than a few percent in the fractional
change in flux (Seward et al. 2000; Helfand, Gotthelf, &
Halpern 2001). The vortex unpinning model does not have
this energy dissipation problem for Vela (Alpar 1995). The
low values of Q measured for Vela glitches are additional
evidence that the predictions of the starquake model do not
match observations; otherwise, the implied Vela mass
would be too low (M <0.5 M, for 0 <0.2 in our models).
Our model results confirm previous conclusions that star-
quakes cannot be a feasible glitch mechanism for the Vela
pulsar.

5.2. Crab

Alpar et al. (1994, 1996) have studied the behavior of
Crab glitches and have determined that the starquake model
is at least partially responsible for them. The magnitudes of
Crab glitches, combined with the observed glitch rate, sup-
port this notion. Lyne (1992) indicates that the small size of
Crab glitches (AQ/Q ~ 10-8) allows for small changes in
oblateness that would not significantly deplete the oblate-
ness over the current lifetime of the Crab. Link, Franco, &
Epstein (1998) and Franco, Link, & Epstein (2000) also
show that the permanent postglitch offsets in the period
derivative seen for the Crab pulsar can be accounted for by
starquakes: the net torque on the star increases through
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shearing effects. Our model results are also consistent with
the starquake interpretation for Crab glitches. The frac-
tional moment of inertia values in our models are com-
parable to the observed Q-values for Crab glitches (0=0.7)
if M 20.15 M, which seems likely. Alpar et al. (1994) set a
lower limit of 0.2% for the fractional crustal moment of
inertia. This is not constraining our models, since the
corresponding fractional core moment of inertia range
Loore/ Tiota1 $0.998 is easily satisfied. Our results support pre-
vious suggestions that starquakes could be responsible for
Crab glitches.

6. CONCLUSIONS

Using parameterized NS models produced from seven
representative EOSs of superdense matter, we find that the
fractional moment of inertia of the core component of the
model stars is Iore/Jiota1 = 0.55 for all stable configurations
in the assumed realistic NS mass range of 1.4 £ 0.2 M, (Fig.
3). This ratio, which is predicted by the starquake model to
equal the glitch healing parameter Q, is not consistent with
the observed range Q <0.2 for Vela glitches (see Table 1),
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unless the Vela pulsar mass is unrealistically small (M <0.5
M). This confirms results from previous studies of the Vela
pulsar that indicate that starquakes are not the cause of Vela
glitches (Lyne 1992; Alpar et al. 1993; Chau et al. 1993;
Alpar 1995). The much larger values of Q0 >0.7 seen for
Crab glitches (Table 1) are consistent with the moment of
inertia values of our models for realistic masses, as predicted
by the starquake model. These results support previous con-
clusions from the analysis of Crab glitch behavior (Alpar
et al. 1994, 1996; Link et al. 1998; Franco et al. 2000) in
which starquakes have been proposed as the Crab glitch
mechanism. Repeated and accurate measurements of Q for
other glitching pulsars in the future (if obtainable) could be
used as a simple test of the starquake glitch model and may
help resolve whether differences between Crab-like and
Vela-like glitches can be understood on evolutionary
grounds (e.g., Alpar 1995).

We thank the referee for helpful comments that improved
the manuscript and for suggesting the inclusion of addi-
tional EOSs in the modeling. M. D. was partially supported
by a grant of the Polish Committee for Scientific Research.
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