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Abstract

The mergers of supermassive black hole binaries (SMBHBs) promise to be incredible sources of gravitational waves
(GWs). While the oscillatory part of the merger gravitational waveform will be outside the frequency sensitivity range of
pulsar timing arrays, the nonoscillatory GW memory effect is detectable. Further, any burst of GWs will produce GW
memory, making memory a useful probe of unmodeled exotic sources and new physics. We searched the North
American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11 yr data set for GW memory. This data set
is sensitive to very low-frequency GWs of ∼3 to 400 nHz (periods of ∼11 yr–1 month). Finding no evidence for GWs,
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we placed limits on the strain amplitude of GW memory events during the observation period. We then used the strain
upper limits to place limits on the rate of GW memory causing events. At a strain of 2.5×10−14, corresponding to the
median upper limit as a function of source sky position, we set a limit on the rate of GW memory events at <0.4 yr−1.
That strain corresponds to an SMBHB merger with reduced mass of ηM∼2×1010Mand inclination of ι=π/3 at a
distance of 1 Gpc. As a test of our analysis, we analyzed the NANOGrav 9 yr data set as well. This analysis found an
anomolous signal, which does not appear in the 11 yr data set. This signal is not a GW, and its origin remains unknown.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Millisecond pulsars (1062); Astronomy data
analysis (1858)

1. Introduction

Nonoscillatory gravitational wave (GW) effects have been
known since the 1970s (Zel’dovich & Polnarev 1974; Braginsky
& Grishchuk 1985; Braginsky & Thorne 1987). For cases like
supernovae explosions (Burrows & Hayes 1996) or hyperbolic
passages of massive bodies (Turner & Will 1978), the
nonoscillatory motion of the sources on unbound trajectories is
encoded in the GWs as linear GW memory. For systems with
purely oscillatory source motion, like binary black hole (BBH)
inspirals, the GWs themselves follow unbound trajectories,
generating nonlinear GW memory (Christodoulou 1991; Wiseman
& Will 1991; Blanchet & Damour 1992; Thorne 1992).

GW memory is a permanent change to the spacetime metric,
contributing a DC component to the GW waveform. Nonlinear
memory builds throughout the whole history of a system’s
evolution, with the largest accumulation of memory occurring
during periods of maximal GW emission. For compact binary
sources, a burst of GW memory is produced during the highly
relativistic merger. While nonlinear memory is sourced at the 2.5
post-Newtonian order, it enters the GW amplitude evolution at the
leading, Newtonian order (Arun et al. 2004), making the memory
effect tantalizingly detectable. While the GW memory accumu-
lated during a binary inspiral can be calculated using the post-
Newtonian formalism (Wiseman &Will 1991; Arun et al. 2004), it
was not until Favata (2009a, 2009b, 2011) estimated the memory
effect all the way through binary merger using an effective-one-
body approach that interest in the subject was revitalized.

Pulsars act as highly stable galactic clocks (Lorimer 2008, and
references therein). Their stability allows one to detect small
changes in the arrival times of pulses caused by the passage of
GWs between the pulsar and observer (Sazhin 1978; Detweiler
1979). Long term pulsar timing campaigns provide sensitivity to
low-frequency GWs with periods of months to years. A pulsar
timing array (PTA) combines observational data from multiple
pulsars boosting sensitivity to common effects like GWs (Foster &
Backer 1990; Lommen 2015). Supermassive black hole binaries
(SMBHBs) are the most promising sources of GWs for PTAs.
Inspiraling SMBHB could be detected as individual, resolvable
sources or as a stochastic background of many overlapping sources
(Haehnelt 1994; Jaffe & Backer 2003; Sesana et al. 2009).

While the inspiral phase of an SMBHB emits GWs detectable
by PTAs, the final merger phase emits GWs that are too high
frequency for PTAs to detect (order days−1 for∼109 Msystems).
Despite this, the nonlinear GWmemory associated with the merger
could potentially be resolved independently of the oscillatory
component (Seto 2009; van Haasteren & Levin 2010; Pshirkov
et al. 2010; Cordes & Jenet 2012; Madison et al. 2014). Further,
every GW producing system will produce nonlinear memory, so
searches for GWmemory could uncover exotic sources of GWs or
even new physics. Past studies by the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav; McLaughlin
2013) and the Parkes Pulsar Timing Array (PPTA; Hobbs 2013)

have searched for and placed limits on GW memory in
Arzoumanian et al. (2015, hereafter NG5mem) and Wang et al.
(2015). Additionally, Madison et al. (2016) used PPTA data to
constrain GW memory signals originating in five nearby galaxy
clusters.
As a DC effect, detection prospects for memory have been

considered for experiments spanning the GW spectrum. Favata
(2009a, 2009b, 2011) discussed detection prospects for both
LIGO (LIGO Scientific Collaboration et al. 2015) and LISA
(Amaro-Seoane et al. 2017). As mentioned above, the PTA
community quickly realized the memory detection potential of
their low-frequency GW experiments. More recently, Lasky
et al. (2016), McNeill et al. (2017), and Talbot et al. (2018)
have considered an approach to detecting GW memory with
LIGO by stacking data from several BBH detections. Madison
et al. (2017) have considered the detection prospects of GW
memory originating in globular clusters. Cutler et al. (2014)
point out that GW memory accompanying bursts of GWs at
high redshift could be detectable. The ubiquitous nature of GW
memory production makes it an excellent discovery tool
capable of probing new and exotic physics.
NANOGrav recently published its 11 yr data release

(Arzoumanian et al. 2018b, hereafter NG11). Using this data set
the NANOGrav collaboration has placed limits on a stochastic
background of GWs (Arzoumanian et al. 2018a, hereafter
NG11gwb) and on continuous GWs from individual inspiraling
SMBH binaries (Aggarwal et al. 2019, hereafter NG11cw). In this
work, we search the NANOGrav 9 yr (Arzoumanian et al. 2015,
hereafter NG9) and 11 yr (NG11) data sets for GW memory. Our
primary reported results use NG11.

2. The NANOGrav 9 yr and 11 yr Data Sets

For this analysis we used the NANOGrav 9 yr (NG9) and
11 yr data sets (NG11). The NANOGrav 9 yr data set contains
the times of arrival (TOAs) for 37 pulsars observed between
2004 and 2013. The NANOGrav 11 yr data set extends the 9 yr
data set, including TOAs for 45 pulsars with observations
extending to 2015. Several pulsars have been added to the array
since regular observations began. Despite their names, not all
pulsars in the 9 and 11 yr data sets have observations covering
the whole time span. For our analysis of the 11 yr data set
we used only the 34 pulsars with a minimum of 3 yr of
observations. For more details on NANGrav observations and
data reduction see NG9 and NG11.
NANOGrav observations use two radio telescopes: the 100

m Robert C.Byrd Green Bank Telescope (GBT) of the Green
Bank Observatory in Green Bank, West Virginia; the 305 m
William E. Gordon Telescope (Arecibo) of Arecibo Observa-
tory in Arecibo, Puerto Rico. Prioritizing Arecibo’s better
sensitivity, all pulsars visible to Arecibo (0° < δ< 39°) were
observed with it. Those outside Arecibo’s declination range
were observed with GBT. Two pulsars, PSRsJ1713+0747 and

2

The Astrophysical Journal, 889:38 (11pp), 2020 January 20 Aggarwal et al.

http://astrothesaurus.org/uat/678
http://astrothesaurus.org/uat/1062
http://astrothesaurus.org/uat/1858
http://astrothesaurus.org/uat/1858


B1937+21, were observed with both. We observed most
pulsars once a month. In 2013 we began a high-cadence
observing campaign aimed to increase our sensitivity to
individual SMBH binary sources (Burt et al. 2011; Christy
et al. 2014). Seven pulsars were observed weekly: PSRsJ1713
+0747 and J1909−3744 with GBT; PSRsJ0030+0451, J1640
+2224, J1713+0747, J2043+1711, and J2317+1439 with
Arecibo.

In order to measure pulse dispersion due to the interstellar
medium we observed each pulsar at multiple radio frequencies.
At GBT each pulsar was observed with both the 820 MHz and
1.4 GHz receivers. These two observations were typically
separated by a few days due to mechanical and scheduling
constraints. At Arecibo each pulsar was observed with the
1.4 GHz receiver and one of 430 MHz or 2.3 GHz receiver
depending on the properties of the individual pulsars. The
Arecibo observations are made back-to-back with the second
frequency observation beginning minutes after the first
completes. The telescopes’ backend instrumentation systems
were upgraded between 2010 and 2012. Earlier data were
recorded using the 64 MHz bandwidth ASP (Arecibo) and
GASP (GBT) systems. Newer data were recorded with the
wideband PUPPI (Arecibo) and GUPPI (GBT) systems. During
the transition data were simultaneously recorded with both
systems for verification; however, only the data from the newer
system is included in the release.

We fit a timing model to each pulsar’s observed TOAs using
tempo42 and tempo243 (Edwards et al. 2006; Hobbs et al.
2006). The timing models for all pulsars include the spin
period, spin period derivative, sky location, distance, and
proper motion. Pulsars in binaries have additional Keplerian
and post-Keplerian parameters describing the binary motion.
The timing models also account for dispersion measure
variations, as a piece-wise offset from the mean for each
observing epoch, as first discussed in Demorest et al. (2013,
hereafter NG5).

3. Data Analysis Methods

We present the first fully Bayesian search for GW memory
with a PTA. This work represents a leap forward in analysis
sophistication over NANOGrav’s previous search for GW
memory (NG5mem).

3.1. Model Overview

We modeled the residual pulse time of arrival, δt, for a
particular pulsar as the sum of stochastic and deterministic
components

d = + +t s b nT . 1( )

In this framework s represents deterministic effects such as
those from GWs or a solar system ephemeris (SSE) model. Tb
are stochastic processes described by a Gaussian process
model: T is the design matrix of basis functions for the models,
and b are the model coefficients. This Gaussian process model
was used for low-frequency (red), intrinsic pulsar noise and to
account for uncertainty in the pulsar timing model. White noise
sources are given by n, including template fitting uncertainty

and radio frequency correlated pulse jitter noise (see Cordes &
Shannon 2010, and references therein).

3.2. GW Model

Nonlinear GW memory is believed to accompany the
oscillatory GWs produced by compact binaries. Favata (2009a)
computed the total accumulated memory during BBH inspiral
and merger, finding44
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where M=m1+m2 is the binary total mass; h = m m M1 2
2

is the reduced mass ratio; R is the comoving distance to the
source; ι is the binary inclination; and ΔErad is the radiated
energy, which is approximated in Equation (3) following
Lousto et al. (2010). Assuming a modest inclination ι=π/3,
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For a nonprecessing source, the GW memory signal is purely
linearly polarized. Following the usual coordinate conventions
for BBH inspiral and merger, the memory is “+” polarized in
the source frame. The observed polarization angle will depend
on the specific source-detector geometry.
We implemented the same memory model used by van

Haasteren & Levin (2010), Pshirkov et al. (2010), Madison
et al. (2014), Wang et al. (2015), and NG5mem. This model
treats the GW memory as a step function that turns on (and off)
as the wavefront passes by the Earth at time t0 (and the pulsar at
time ti). This step in the spacetime metric causes a change in
the distance between the pulsar and the Earth. Each radio pulse
will arrive progressively more late (or early depending on the
sign of the step) compared to the expected TOA. The response
to GW memory in the timing residuals will therefore be a linear
increase (or decrease).
For the amplitude of the step we use hmem directly,

bypassing the source specific amplitude dependencies (M, η,
R, ι). This model ignores the details of memory accumulation.
We assume that the bulk of the GW memory arises from a
transient burst of GWs at a timescale shorter than our
∼monthly pulsar observations. While PTA searches for GW
memory were originally motivated by BBH systems, this
generic model is agnostic to the source.
We choose to write the GW memory model in a form

slightly different than previous work to better illuminate our
search parameters. The GW’s effect on the time of arrival of
pulses from the ith pulsar is given by

y=
´ - Q - - - Q -

s t h B k n
t t t t t t t t

, ;
, 5

i i i

i i

mem

0 0

( ) ( ˆ ˆ )
[( ) ( ) ( ) ( )] ( )

where hmem is the GW strain of the memory; Bi is the angular
response of the pulsar, which depends on its sky position niˆ and

42 tempo.sourceforge.net
43 bitbucket.org/psrsoft/tempo2.git 44 In geometric units where G=c=1.
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the sky position q fk ,ˆ ( ) and polarization (ψ) of the source
(Estabrook & Wahlquist 1975); t0 is the time that the GW
wavefront passes the Earth, ti is the retarded time for the GW
wavefront passing the pulsar (GW passage time corrected for
signal travel time from pulsar to Earth), and Θ is the Heaviside
step function. This model assumes a plane-fronted GW with
R?ℓi, i.e., the distance to the source is much greater than the
distance to any pulsar. The sky positions of the pulsars are very
well constrained by the timing model, and we took these to be
known exactly.

The final factor of Equation (5) contains the so-called Earth
term and pulsar term, describing the state of the GWs at each
location. With the typical pulsar distance being ∼kpc the Earth
and pulsar terms will not both fall within our 11 yr observation
window unless the propagation direction of the GW is nearly
perpendicular to the Earth–pulsar separation. The source
positions which result in both the Earth and pulsar term being
active in the observation time represent a small but non-
negligible fraction of the sky (Pitkin 2012). Further, a search
including both the Earth and pulsar term would potentially add
a small amount of signal-to-noise for these sources (Cordes &
Jenet 2012; NG5mem). However, including the pulsar term
would greatly complicate the analysis owing to the poorly
constrained Earth–pulsar distances. For this reason, we did not
do a simultaneous search for both the Earth and pulsar terms.
Instead, we undertook two separate analyses:

1. A search for the Earth term only

y= - Q -s t h B k n t t t t, ; . 6i i imem 0 0( ) ( ˆ ˆ )( ) ( ) ( )

This search combined data from all pulsars and had five
free parameters in the GW model (hmem, t0, θ, f, ψ).

2. A search for the pulsar term only

= - Q -s t s h t t t t , 7i i iopt( ) ( ) ( ) ( )

where hopt is the strain amplitude assuming an optimally
oriented source and s is the sign (+/−) of the memory
effect. The pulsar term search was conducted on each
pulsar individually and had three free parameters in the
GW model h t s, ,iopt( ). The signal model was modified
for the pulsar term search, because the angular response B
is completely covariant with the GW amplitude hmem.
When using a single pulsar, the extrinsic parameters of
the source yk,( ˆ ) are not constrained.

It is nearly impossible to make a confident detection with a
single pulsar term search, because the GW memory signal is
nearly indistinguishable from an intrinsic pulsar glitch (van
Haasteren & Levin 2010). Even though it would be hard to
trust a GW detection from a single pulsar search, we can still
use nondetection in the pulsar term search to set upper limits.
The individual pulsar term searches cover many independent
time periods, making pulsar term limits especially useful for
constraining the rate of GW memory producing events.

There are a small fraction of source locations that would
result in the GW passing multiple pulsars but not the Earth
during our observation. Analyzing multiple pulsar terms
without the Earth term to cover these cases, could result in a
small boost to signal-to-noise. As in the Earth term search, the
poorly constrained Earth–pulsar distances would greatly
complicate any multiple pulsar term search. For this reason,
we performed only single pulsar term searches. We did not

search over cases with multiple simultaneous pulsar terms for
simplicity.

3.3. White Noise Model

We used the pulsar noise model described in Lam et al.
(2016) and also used in NG11 and NG11gwb. The white noise
is parameterized in each pulsar per each observing system, k
(each unique combination of telescope frontend and backend
hardware, e.g., L-band GUPPI). This noise n is defined by a
covariance matrix with each TOA specified by its observation
time t and radio frequency ν

d d s= + +nn nn¢ ¢ ¢ ¢   N , 8tt k tt k k k
2 2 2 2[ ( ) ] ( )

where σ is the pulse template fitting uncertainty; k is “EFAC,”
an additional scaling factor (in practice ∼1 for all); k is
“EQUAD,” an additional variance added in quadrature; k is
“ECORR,” a component that is correlated between different radio
frequency channels for a given observation, but not correlated
from one observation to the next.  includes pulse jitter noise.
Finally, δ is the Kronecker delta. The parameters  ,, and 
account for additional noise which is empirically observed, but not
accounted by pulse template fitting uncertainty σ alone (Lam et al.
2016). The “E” names refer to the parameter names given in the
tempo and tempo2 pulsar timing software.
The white noise covariance matrix N is block diagonal. The

σs,  s, ands run down the diagonal, and the s form blocks
connecting each frequency channel from the same observation.

3.4. Gaussian Process Models

We modeled the remaining stochastic processes as Gaussian
processes (see Appendix C of NG9 and Section 3 of Arzoumanian
et al. 2016 for more discussion of this methodology). In this
framework each process is defined by T, a design matrix of basis
functions, b, a vector of basis coefficients, and B, a covariance
matrix defining the Gaussian priors on b.
We defined the intrinsic pulsar red noise as a Fourier-basis

Gaussian process. The design matrix Tred contains the sine and
cosine basis functions, and the coefficients bred=(a, b)j are the
Fourier coefficients such that

å p p= +
=

bT a f t b f tsin 2 cos 2 . 9
j

N

j j j jred red
1

[ ( ) ( )] ( )

We restricted the sum to the first N=30 Fourier components
(starting at the inverse observation time), as this model is for
low-frequency noise unaccounted elsewhere.
The red noise is modeled as a power-law spectrum

=
g

-

-

P f A
f

yr
yr , 10j

j2
1

3( ) ( )
⎛
⎝⎜

⎞
⎠⎟

where A is the characteristic amplitude at the reference
frequency of -yr 1, and γ is the spectral slope. The spectral
shape defines the priors on the Fourier coefficients. The
individual Fourier components are approximated as uncorre-
lated, so the resulting covariance is diagonal:

=B P f . 11ii ired( ) ( ) ( )

We also defined the timing model uncertainty in the Gaussian
process framework. The design matrix, Ttm, has columns that are
the timing model linearized around the best-fit parameters, and
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the basis coefficients, btm, are small offsets from the best-fit
timing parameters. We placed an unconstrained, uniform prior
on the timing offsets by setting the covariance to a diagonal
matrix of infinities, = ¥B iitm( ) .

We then concatenated the various Gaussian processes into
the form of Equation (1).

= =

=

b
b
b

T T T

B
B

B

, ,

. 12

tm red
tm

red

tm

red

[ ]

( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Additional Gaussian processes can be cleanly added in the
same way. For instance, one could include a stochastic GW
background as a correlated noise source in all pulsars by adding
an additional Gaussian process model. We do not include it in
this work, but this data analysis framework allows for a
stochastic GW background to be added in a straightforward
manner in the future.

3.5. SSE Model

NG11gwb showed that the NANOGrav 11 yr data set is
sensitive to uncertainty in the SSE. SSE errors can appear as a
spatially correlated stochastic process. As the GW background
is also a spatially correlated stochastic effect, there is a natural
covariance between the two (Tiburzi et al. 2015). Because GW
memory appears as a transient, deterministic effect, there is
little confusion between SSE errors and GW memory.

Despite this, we chose to use the same BayesEphemmodel
described in NG11gwb to mitigate SSE uncertainty in this
analysis. BayesEphemimplements perturbations to a given
SSE by varying 11 parameters: the masses of the gas giants (4),
the rotation rate about the ecliptic pole (1), and Jupiter’s orbital
elements (6). We repeated most analyses using two recent JPL
SSEs: DE430 and DE436 (Folkner et al. 2014; Folkner &
Park 2016). For each SSE we conducted two analyses: holding
the SSE fixed and using the BayesEphemmodel. Results
reported as “BayesEphem” used DE436 as the input SSE before
perturbations. There was no measurable difference between
using DE430 and DE436 as the BayesEpheminput.

3.6. Bayesian Analysis

3.6.1. Likelihood

We constructed a Gaussian likelihood based on the white
noise covariance. The model residuals, r, should follow the
same distribution as the white noise, n:

d

d l
p

= - -

=
- -

r t b s

t b
r r

T

p
N

N
,

exp

det 2
, 13

1

2
1( )

( ∣ )
· ·

( )
( )

where λ are the model parameters (red and white noise,
deterministic signals), and N is defined by Equation (8).

Following the scheme of Lentati et al. (2013) and van
Haasteren & Vallisneri (2015), we can analytically marginalize

over the Gaussian process coefficients b, leaving us with
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The white   , ,( ) and red (A, γ) per-pulsar noise
parameters contribute to the final covariance matrix, appearing
in N and B, respectively. The Woodbury (1950) matrix identity
can be used to evaluate Equation (14) efficiently. Sparse matrix
algebra can provide an additional speedup.
The noise parameters that appear in C of Equation (14) were

first fit with individual noise analyses for each pulsar. For
computational efficiency in the GW analyses, we held the white
noise parameters fixed to their median values. The per-pulsar
red noise parameters were simultaneously searched with the
global GW parameters and SSE parameters, owing to their
covariance. With 34 pulsars the search space for the 11 yr Earth
term analysis contained 84 dimensions, ´ + +34 2 5RN GW( )
11SSE.

3.6.2. Priors

We preferred ignorance priors for our model parameters,
implementing uniform or log-uniform priors for all. We used the
same priors for noise parameters as NG11gwb and NG11cw.
For detection analysis we follow the philosophy of NG11gwb,

setting a log-uniform prior on hmem. This prior is improper for
upper limit analysis: in order to set upper limits on the amplitude
of GW memory we must integrate our posterior from a lower
bound of hmem=0. Following the detection analysis, we reran
our pipeline using a uniform prior on hmem for the purpose of
setting upper limits.

3.6.3. Inference

We used the Bayes factor for the GW model compared
to a noise only model, gw, as our detection statistic. We
calculated Bayes factors using the Savage–Dickey approx-
imation (Dickey 1971),

d
= »





 t

p h

p h
lim , 15

h
gw

gw

noise 0

mem

memmem

( )
( ∣ )

( )

which approximates the evidence ratio ( gw noise) for the GW
and noise only models as the ratio of the prior to posterior
probability in the limit that GW amplitude goes to zero. This
calculation uses posterior samples near the low amplitude prior
boundary and is much more computationally efficient than a
full evidence integral. The GW model is favored when there is
low posterior probability for small hmem, i.e., the posterior for
hmem is peaked away from zero.

3.7. Software

Our analysis, like NG11gwb and NG11cw, used NANO-
Grav’s core data analysis software, enterprise45 (Ellis
et al. 2019) to compute the posterior probability for our models.
Likelihood evaluations were sped up using sparse matrix

45 github.com/nanograv/enterprise
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algebra with the scikit-sparse46 Python package and the
SuiteSparse47 C library (Chen et al. 2008). We sampled
our posterior distribution for Bayesian inference with
PTMCMCSampler48 (Ellis & van Haasteren 2017). We used
healpy49 (Zonca et al. 2019) and HEALPix50 (Górski et al.
2005) to grid the sky for some analyses.

4. Results

4.1. Detection Statistics

We find no evidence for GW memory in the NANOGrav
11 yr data set. For the Earth term search we analyzed the 34
pulsars with a minimum observation baseline of three years (we
did not analyze the 11 additional pulsars which had been
observed for less than this). We set a log-uniform prior on GW
memory strain amplitude and uniform priors on the other
search parameters. We searched over burst epochs between
2005.7 and 2015.4. We did not search for GWs in the first 10%
and last 5% of the data set, owing to biases brought about by
the loss of sensitivity near the edges of the data set (this effect
is clearly seen in our amplitude upper limits, e.g., Figure 2).
The Earth term search results in a Bayes factor of » 0.7gw for
the GW memory model compared to the noise only model.

In the pulsar term search we analyzed data from the same 34
pulsars, individually, calculating the Bayes factor for each. The
results are shown in Figure 1. Most pulsars prefer the model
without a GW memory burst, having < 1gw . PSR J1744
−1134is the pulsar with the largest Bayes factor, » 3.5gw .
This Bayes factor is on the threshold of worth mentioning
according to the Jeffreys (1961) scale. The preferred burst time,
t0, occurs near the beginning of J1744−1134’s observation
period, when data were of lower quality (sparser sampling,
narrow radio band).

We also searched the NANOGrav 9 yr data set, using the
same methods as the 11 yr. In this case we found an anomalous
GW memory-like signal at MJD 55422±46, about 2010.6. If
this were truly a GW signal, it would have appeared in the
11 yr data analysis, as well. Seeing as it did not, we can

confidently say it must not be a GWmemory burst. Additionally,
nearly any modification to the individual pulsar noise modeling
reduces the significance of this event considerably. For further
discussion of this anomalous event see Appendix A.

4.2. Upper Limits

Finding no evidence for GW memory in our data we place
upper limits on the strain of GW memory events during our
observations. To compute strain upper limits we sampled the
log-amplitude of GW strain, placing an exponential prior on
this parameter. This is equivalent to sampling strain amplitude
directly with a uniform prior. Our prior choice biases the
posterior toward higher amplitude. This well known effect
results in conservative limits and is not usually a problem. In
our case the nonuniform sensitivity of our PTA combines with
the amplitude prior in such a way that the most insensitive
times and sky positions dominate the posterior.
For GW amplitudes below the sensitivity of our PTA, the

likelihood is flat: changes in signal parameters do not change
the likelihood. In this case the posterior is dominated by the
amplitude prior. The highest probability regions of the posterior
will correspond to insensitive source orientations (sky position,
polarization) and times, where the GW amplitude can be made
largest without affecting the likelihood. The end result is a
posterior that is peaked at our PTA’s blind spots. If we were to
naively perform an all sky, all time search and use the 1D
marginal posterior for strain amplitude to compute an upper
limit, the limit would be dominated by the most insensitive
times and source orientations. This limit would not be a fair
representation of our search.
For physical reasons we do not expect GWs to originate

from any particular direction. The nonuniformity of our
posterior distribution in source orientation is caused by the
amplitude prior. We can fix this by implementing a nonuniform
prior on source orientation which exactly cancels the bias from
the amplitude prior. This type of prior scheme is sometimes
called a Malmquist prior, as it corrects for selection effects as
Malmquist (1922) did for stellar absolute magnitude. We
describe our method to unbias our rate upper limits below.
To place upper limits on the rate of GW memory bursts, we

first need strain amplitude upper limits as a function of time.
These are computed by determining a source orientation
averaged upper limit for each of 40 time bins. We drew MCMC
samples for each time bin resulting in a posterior biased to
insensitive source orientations, as described above. We then
resampled the biased posterior, effectively implementing a post
hoc prior on source orientation to ensure uniform distributions.
In our resampling scheme, we binned the source sky location
using an HEALPix grid with 48 bins, nside=2. We binned
the polarization angle into 8 bins from 0 to π. We then drew
samples from the biased posterior ensuring an equal number of
samples lie in each of these 384 source orientation bins. By
construction the resulting samples are uniformly distributed in
source orientation. The final 1D marginal distribution for strain
amplitude is uniformly averaged over source orientation and
not biased toward insensitive locations. The results of this
effort are shown in Figure 2. We find that our limits are not
drastically affected by choice of SSE.
To produce a pulsar term limit we conducted the upper limit

versus time analysis for each individual pulsar in the array.
First, we computed the upper limit as a function of time for
an optimally oriented source. The upper limit for the most

Figure 1. Bayes factor distribution for single pulsar term searches for GW
memory. Bayes factors less than 1 imply the model without a GW memory
burst is preferred. Three of the 34 pulsars have a Bayes factor slightly larger
than 1, meaning the GW memory model is slightly preferred over the noise
model. None are significant.

46 github.com/scikit-sparse/scikit-sparse
47 faculty.cse.tamu.edu/davis/suitesparse.html
48 github.com/jellis18/PTMCMCSampler
49 https://github.com/healpy/healpy
50 https://healpix.jpl.nasa.gov/

6

The Astrophysical Journal, 889:38 (11pp), 2020 January 20 Aggarwal et al.

http://github.com/scikit-sparse/scikit-sparse
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://github.com/jellis18/PTMCMCSampler
https://github.com/healpy/healpy
https://healpix.jpl.nasa.gov/


sensitive pulsar, PSRJ1713+0747, is shown in Figure 3. It is
compared to the sky averaged Earth term limit, and the limit
using the most sensitive sky position from the Earth term
search. We see that for optimally oriented sources the Earth
term which combines information from many pulsars is more
limiting than the single best pulsar.

An individual pulsar cannot distinguish source orientation as
discussed in Section 3.2. In order to set a limit for all sources,
we applied a correction factor to account for a source
orientation average. The correction factor comes from
analytically marginalizing over source orientation, assuming
uniform priors on sky position and polarization angle, and is
shown in Appendix B. The choice of prior for the pulsar term
sky averaging matches the resampled posterior, ensuring the
two can be compared directly.

To explicitly show how the sky position of the source affects
the strain upper limit, we conducted a second analysis. In this
case we set a limit for each pixel of an nside=8 HEALPix
grid (768 sky locations) marginalizing over polarization angle.
Because the sky sensitivity of the PTA changes as new pulsars
are added to the array, we focused this analysis to more recent
times, ∼2012–2015. We used all of the observed TOAs in this
analysis, but only searched for GW memory in that time span.
The results of this analysis are shown in Figure 4. Our PTA
is up to an order of magnitude more sensitive to sources
originating from the most sensitive sky positions compared to
the least.

Note that the optimal source upper limit shown in Figure 3 dips
below 10−14. This optimal source includes the optimal polarization
angle, while the analysis shown in Figure 4 marginalizes over
polarization angle.

5. Discussion and Conclusions

From the strain upper limits as a function of burst epoch, we
can construct a limit on the rate of GW memory events.
Figure 5 shows these limits. The left panel compares the rate

limits from this work to those predicted by Islo et al. (2019),
who predicted the rate of memory events from SMBHB
mergers for LISA and PTAs. Based on their analysis using a
simulated galaxy stellar mass function from Sesana et al.
(2014) and the MBH–Mbulge relation of McConnell & Ma
(2013), we should expect a very small number of SMBHB
mergers producing GW memory detectable by PTAs. The right
panel of Figure 5 compares the limits from this work to the
previous published NANOGrav limits of NG5mem.
The median sky position bin from Figure 4 has an upper

limit of ∼2.5×10−14. Taking this as representative of our
Earth term strain sensitivity, this work improves the rate
constraints at that strain by more than two orders of magnitude,
a factor of ∼160, relative to NG5mem. For larger amplitudes,
3×10−13 this work improves the NG5mem Earth term
limits by a factor of 10. Finally, this work improves the large
amplitude pulsar term limit by a factor of ∼20 compared
to NG5mem.
Our nondetection of GW memory from SMBHB merger

should come as no surprise. While this work was motivated by
the prospects of detecting SMBHB merger, GW memory is a
generic feature of all GW producing events. Our rate limits are

Figure 2. 95% upper limit on GW memory strain amplitude as a function of
burst epoch, marginalized over source orientation. The very small semitran-
sparent regions contain the 90% sampling uncertainty on upper limits. Top:
comparison of 9 and 11 yr data sets using BayesEphem. The elevated upper
limit from the 9 yr data set during 2010–2012 is a result of the anomolous
signal. See Section 4.1 and Appendix A for further discussion. Bottom:
comparison of 11 yr data set under different SSEs. Note that the black curve, 11
yr with BayesEphemis the same in both.

Figure 3. 95% upper limit on GW memory strain amplitude as a function of
burst epoch. The three curves show the sky averaged Earth term upper limit
(same as Figure 2); the Earth term upper limit for the most sensitive sky
position for each epoch; and the pulsar term upper limit for an optimally
oriented source using the most sensitive single pulsar, PSR J1713+0747.

Figure 4. 95% upper limit on GW memory strain amplitude as a function of
sky location of source, using BayesEphem. We placed a prior on burst epoch to
constrain the analysis to the more recent time span of the data ∼2012–2015.
The low density of pulsars in R.A. 0–12 h makes us much less sensitive to GW
memory originating in that hemisphere. Stars mark the locations of the 34
pulsars used in this work. This map is in equatorial coordinates.
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presented as agnostic limits on events that produce GW
memory of a particular amplitude.

Future searches for GW memory with PTAs are unlikely to
detect SMBHB mergers, but other sources can produce GW
memory detectable by PTAs. Because the amplitude of GW
memory is proportional to the source mass and inversely
proportional to distance, GW memory from much smaller
sources could be detectable much closer to home. For instance,
Madison et al. (2017) discussed the prospects of detecting
stellar mass compact binary mergers in globular clusters in the
Milky Way. If memory sources are located in the Milky Way,
the data analysis methods used will need to be altered. Nearby
sources will violate the plane-wave assumption, so Madison
et al. (2017) considered spherically fronted waves. Depending
on the location of the GW memory producing event relative to
the pulsars in the array, an event could activate multiple pulsar
terms and/or the Earth term. Searches for these sources will
face many of the same challenges that have affected searches
for continuous GWs from individual SMBHB sources.
Effective methods to simultaneously determine the poorly
constrained Earth–pulsar separations and the GW parameters is
foremost among these problems (Corbin & Cornish 2010). The
solution to this problem for GW memory searches will differ
from those implemented in continuous GW searches (e.g.,
Ellis 2013; Taylor et al. 2014) owing to the transient nature of
the GW memory signal. Like in continuous GW searches,
incorporating good prior information from pulsar distance
measurements will play a crucial role. Pulsar timing provides
distance measurements via parallax for some pulsars (e.g.,
Matthews et al. 2016; NG11). For pulsars with no timing
parallax, an independent distance measurement should be
incorporated, if available. These could come from Very Long
Baseline Interferometry (e.g., Deller et al. 2009) or other
astrometric experiments (e.g., Jennings et al. 2018; Mingarelli
et al. 2018).

There remains a rich discovery space for exotic sources of GW
memory (Cutler et al. 2014). As any burst of GWs will produce
GW memory, exotic GW producing events such as cosmic strings
(Damour & Vilenkin 2001) are possible PTA sources. Even some
non-GW effects, such as a cosmic string crossing between the line
of sight from the Earth to a pulsar, exhibit a similar response in
pulsar timing data (Pshirkov & Tuntsov 2010). Pulsar glitches
also produce a signal very similar to GW memory. While glitches
are much more common in canonical pulsars, there are some

observations of glitches in millisecond pulsars (Cognard &
Backer 2004; McKee et al. 2016). It is possible to use our limits
on GW memory to place limits on glitches in the 34 millisecond
pulsars studied.
More generally, searches for transient GWs in PTAs can

reveal transient features in the noise that are not currently
modeled. This analysis discovered strange noise features in two
of NANOGrav’s longest timed pulsars, PSRs J1909−3744and
J0030+0451, in relation to the anomalous signal detected
in NG9. Both of these pulsars were found to have unmodeled
excess noise by Lam et al. (2017); however, neither stands out
as extraordinary in its noise features in that study from other
pulsars in the array. These newly discovered noise features,
along with surprising noise features uncovered in concurrent
NANOGrav data analysis (NG11cw; Hazboun et al. 2019), are
driving the development of new PTA data analysis techniques.
Looking into the future, searches for GW memory should

remain an integral part of the PTA data analysis regime. These
analyses should be implemented on new data sets, like the
second data release from the International Pulsar Timing Array
(IPTA; Perera et al. 2019).
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Appendix A
An Anomalous Event in the 9 yr Analysis

As stated in Section 4.1, when analyzing the data from NG9
we find an anomalous GW memory detection. The best-fit sky
position for this anomalous event is a region of low sensitivity
(J2000, R.A. 4h 23m, Decl. 5° 44′). This sky location combined
with the best-fit polarization angle conspire to hide this event
from nearly all of our pulsars. To determine which pulsars are
problematic we can perform a “dropout analysis” introduced
in NG11cw. For a dropout analysis we conduct the standard
search with a few modifications. First, we fix the parameters of
the GW memory signal to match their best-fit values from the
previous analysis. Next, we introduce a new parameter for each
pulsar which acts as a switch. Pulsars that are switched on have
the GW memory signal included in the likelihood calculation.
Pulsars that are switched off do not. From the posteriors of
these parameters we are able to assess whether each pulsar
prefers a noise only model or a noise plus GW memory model.
If a pulsar prefers to be in the off state, then the noise only
model is a better fit to its data.

Bayes factors for on versus off for each pulsar are shown in
Figure 6. PSRs J1909−3744and J0030+0451are the only two
that show significant preference for the GW memory signal
being turned on with Bayes factors ∼100. This tells us that the
anomalous signal is isolated to these two pulsars and therefore
unlikely to be a true GW memory signal. We expect any real
GW signal to appear significantly in several pulsars.

Based on the 11 yr single pulsar limits, the four most sensitive
pulsars in the array to GW memory are PSRs J1713+0747,

J1909−3744, J2317+1439, and J1600−3053. The first three
were observed for the whole length of the data set, while J1600
−3053was added to the array in 2008. It is worth noting that the
three “most off” pulsars are included in this list. The presence of
any off pulsars should be a red flag for validating a detection. If a
pulsar is insensitive to a signal it should have no preference for
on or off, therefore a Bayes factor∼1. The anomolous signal has
a source orientation that already minimizes the response to most
pulsars in the array. The dropout analysis shows us that even
with this suppressed amplitude our most sensitive pulsars should
still be able to see it, yet they do not.
While we are certain that this signal is not a GW, its origin

remains a mystery. Deeper investigation into the noise
properties of the NANOGrav PTA is ongoing. As the PTA
continues to become more sensitive, new noise sources emerge
which must be characterized and modeled.

Appendix B
Averaging Over Source Orientation

In order to have a fair comparison between the upper limits
found from the Earth term, which were marginalized over source
orientation, and the optimal oriented upper limits found from the
pulsar term, we must rescale the pulsar term limits accounting
for the varying sensitivity depending on source orientation. Most
previous work followed van Haasteren & Levin (2010) and used
the rms average of the pulsar angular response function á ñB2 to
account for source orientation. Because the Earth term upper
limit marginalizes over source orientation, the fair comparison
would do the same. Here we analytically marginalize a pulsar’s
angular response yB k n, ;i i( ˆ ˆ ), introduced in Equation (5) over
the GW source orientation.
A pulsar’s angular response to GW memory is given by

Estabrook & Wahlquist (1975) as (dropping the subscript)

y a b b a

a

= = -

=

B k n B

n k

, ; ,
1

2
cos 2 1 cos

cos , 16

( ˆ ˆ) ( ) ( )( ( )

( ) ˆ · ˆ ( )

where α is the angle between the line of sight to the pulsar n̂ and
the source k̂ , and β is the projected azimuthal angle between the
source’s principle polarization vector (defined by ψ) and n̂ in the
plane perpendicular to k̂ .
For fixed n̂ and k̂ we can marginalize over the projected

source polarization. We integrate only the positive half cycle of

Figure 6. Results of dropout analysis for the anomalous event in the 9 yr data
set. Bayes factors for the signal to be on in each pulsar. The event is dominated
by two pulsars, PSRs J1909−3744and J0030+0451. This event was not found
in the analysis of the full 11 yr data set indicating it is not a real GW event.
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β using a uniform prior.
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Without loss of generality we can align the line of sight to
the source with the ẑ -axis of our coordinate system. Using
spherical polar coordinates, q=n k cosˆ · ˆ , where θ is colati-
tude, and (θ, f) is the source position on the sky. We
marginalize over source position using a uniform prior on the
whole sphere of solid angle.
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Finally, we put it all together:
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We can rescale our single pulsar, optimally oriented upper
limits by a factor of π to account for nonuniform sensitivity.
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